
Bennet Blischke 11.07.2024

Shells on Constrained Devices
Using CoAP to explore new UX paradigms for embedded shells

1



What is a shell?

• The interface between User and Operating System


• Command Line Interface (CLI)


• Graphical User Interface (GUI)


• They form the outer shell of the computing system

image: Flaticon.com
2



What is a shell?

• The interface between User and Operating System


• Command Line Interface (CLI) 

• Graphical User Interface (GUI)


• They form the outer shell of the computing system

image: Flaticon.com
3



How are Shells used on Constrained Devices?
A RIOT OS perspective

Embedded deviceTypical Connection: 
UART over USB

Programmer’s 
computer

4

Exchange of ASCII characters 



How are Shells used on Constrained Devices?
A RIOT OS perspective

Embedded deviceTypical Connection: 
UART over USB

Programmer’s 
computer

5

Exchange of ASCII characters 



How are Shells used on Constrained Devices?
A RIOT OS perspective

6



How are Shells used on Constrained Devices?
A RIOT OS perspective

7



How are Shells used on Constrained Devices?
A RIOT OS perspective

8



How are Shells used on Constrained Devices?
A RIOT OS perspective

9



How are Shells used on Constrained Devices?
A RIOT OS perspective

10



Shortcomings

• ROM / RAM overhead due to string-parsing on the constrained device


• It’s complicated to exchange binary data via an ASCII stream


• No correlation between received text and origin


• First thread starts to write


• Another thread interrupts & writes its own message


• First thread continues and finishes its message


• The re out of order sult is hard to read and

11



Shortcomings

• Long running and highly asynchronous tasks block the shell


• Difficulties in unit-/automated testing of shell components


• Signalling of success and failure of commands

12



The Issue with String Parsing
ROM / RAM overhead due to string parsing on the constrained device

• Strings require a lot of ROM, one byte per character


• 🔝That just was 53 bytes!


• Even worse, when formatting strings. Example:


• printf(“Year %d”, year);


• 7 bytes for the format string


• 9 bytes for the result “Year 2024”

13



The Issue with String Parsing
ROM / RAM overhead due to string parsing on the constrained device

• We do a lot with strings in our shells


• A command takes strings as parameter: ifconfig(int argc, char *argv[])


• Now, parse “ifconfig 7 set channel 0x21”


• A command outputs its result by printing formatted strings


• Try printing a table of running threads

14



How do We Improve?
Format Strings

• Deferred Formatting:


1. Assign all format strings a short ID


2. Only compile the ID into the firmware


3. When printing, send the ID + format values as it


4. On the host, look up corresponding strings for received IDs


5. Format and print on the host side

15

For an example see:


https://defmt.ferrous-systems.com/



How do We Improve?
Correlating output to commands

• We need a lightweight Application Protocol


• Suitable for Constrained devices


• Allows to issue a command with optional parameters


• Provides request & response matching


• Can handle errors:


• On the host side e.g. “invalid parameter for command”


• On the IoT side e.g. “failed to enable SPI”

16



How do We Improve?
Correlating output to commands

• We need a lightweight Application Protocol


• Suitable for Constrained devices


• Allows to issue a command with optional parameters


• Provides request & response matching


• Can handle errors:


• On the host side e.g. “invalid parameter for command”


• On the IoT side e.g. “failed to enable SPI”

17

That’s CoAP!



Even More CoAP Benefits!

• Completely asynchron: Request now, get the response later!


• With CoAP Observe, we can have timer, events and interrupts in our shell


• Big binary payload? CoAP block-wise transfer saves the day


• Robust ecosystem due to related standards:


• Discover shell commands via /.well-known/core


• Describe commands using CoRE Link Format

18



CoAP transports via UDP…
… but we don’t have UDP, not even IPv6!

19

Embedded deviceTypical Connection: 
UART over USB

Programmer’s 
computer



SLIP
Serial Line IP

• Very old RFC from 1988


• Short framing and escaping protocol


• Easily send IP frames over serial / UART

20



SLIP
Serial Line IP

• Very old RFC from 1988


• Short framing and escaping protocol


• Easily send IP frames over serial / UART

21

Can we speak CoAP over UDP over IP via SLIP?



SLIP
Serial Line IP

• Very old RFC from 1988


• Short framing and escaping protocol


• Easily send IP frames over serial / UART

22

Can we speak CoAP over UDP over IP via SLIP?

Yes! 


But that’s a lot of overhead, we just want CoAP



SLIPMUX
Using an UART interface for diagnostics, configuration, and packet transfer

• New draft from 2019


• Builds on top of SLIP, but adds multiplexing for diagnostic and configuration

23



SLIPMUX
Using an UART interface for diagnostics, configuration, and packet transfer

• New draft from 2019


• Builds on top of SLIP but adds multiplexing for diagnostic and configuration


• Diagnostic messages are just UTF-8 strings


• Neat! We can use that for backwards compatibility to the existing shell!

24



SLIPMUX
Using an UART interface for diagnostics, configuration, and packet transfer

• New draft from 2019


• Builds on top of SLIP but adds multiplexing for diagnostic and configuration


• Diagnostic messages are just UTF-8 strings


• Neat! We can use that for backwards compatibility to the existing shell!


• Configuration messages are CoAP packages!


• This also solves the issue of finding the IP addresses of both participants

25



SLIPMUX
Using an UART interface for diagnostics, configuration, and packet transfer

• New draft from 2019


• Builds on top of SLIP but adds multiplexing for diagnostic and configuration


• Diagnostic messages are just UTF-8 strings


• Neat! We can use that for backwards compatibility to the existing shell!


• Configuration messages are CoAP packages!


• This also solves the issue of finding the IP addresses of both participants


• And if we want, we can still exchange IP frames

26



Let’s prototype!
What does a SLIPMUX client look like?

27



Backwards compatible: help

28



29

Backwards compatible: help



New: Direct CoAP Requests
GET /.well-known/core

30



31

New: Direct CoAP Requests
GET /.well-known/core



32

Backwards Compatible: ps



33

Commands via CoAP: ps



34

Backwards Compatible: reboot



Async!

35

Commands via CoAP: reboot



That was more than just a Shell!

• Because CoAP is not build for human consumption but for machines,           
we can do cool things now: 


• Auto detect and auto complete available shell commands


• Automagically fetch and display useful debugging informations such as 
version and IP addresses of the constrained device


• Digest binary payloads: present them human readable, save to disk, ..


• Chain multiple shell commands, passing their I/O into each other

36



Conclusion & Outlook

• It is feasible to use CoAP as a basis for a modern shell


• Greatly improved usability


• But there is so much more todo!


• Structured parameter and return values of commands, e.g. CBOR


• Interoperability between “new” and “old” shell


• Security aspects: Opening the shell to the network


• ROM increase due to CoAP vs. decrease due to reduced string parsing

37



Bonus Slide: Early Overhead Estimations
Comparing the old `ps` vs. the new CoAP `ps`

38



Bonus Slide: Early Overhead Estimations
Comparing the old `ps` vs. the new CoAP `ps`

39

Old `ps`

New `ps`



Bonus Slide: Early Overhead Estimations
Comparing the old `ps` vs. the new CoAP `ps`

40

Transmits: ~700 bytes 
ROM: ~150 byte code 
ROM: ~140 byte strings

Transmits: ~200 bytes 
ROM: ~240 byte code 
ROM: Zero strings!



Thank you for having me!

41


